# **Dedicated Breast PET**

采用Elmammo进行的乳腺癌术前 化学治疗的效果判定 ~参加ESMO 2017 ~



笹田 伸介 先生

广岛大学医院 乳腺外科 笹田 伸介

### 1. 参加 ESMO 2017

2017年9月8日至12日的5天期间,在马德里(西 班牙)召开了欧洲肿瘤内科学会大会(ESMO 2017) (Fig.1)。来自全世界131个国家约24,000人参加了 此次会议。此次会议是在癌症临床领域仅次于美国临 床肿瘤学会年会(ASCO)的世界第二大规模的学术集 会,发表的演讲题目有1,736个,内容涉及从基础到 诊断、治疗、姑息治疗、存活等多个方面,其中有很 多关于近年来讨论较多的"免疫检查点抑制剂"的报 告内容。广岛大学医院就作为乳腺癌影像诊断的乳 腺专用PET 设备Elmammo(岛津制作所)进行了相关 的报告。今年以"术前化学治疗的效果判定"为主题, 进行介绍。



Fig.1 ESMO 2017 会场的场景(左)与学会海报(右)。

### 2. Elmammo的临床导入

近年来, 乳腺癌发病率急剧上升, 已成为女性 罹患癌症数第1位(缺文献索引)。在追求提高诊断 精度的过程中, 为克服全身PET设备空间分辨率低 的局限性, 开发了乳腺专用PET设备。当初, 从被 称为双平板型的Positron Emission Mammography (PEM)开始, 现在还开发了Elmammo这样的环型 乳腺专用PET设备。环型乳腺专用PET的优势是, 由于不需要像双平板型那样压迫乳房, 因此不会伴 有疼痛便可以得到3D影像信息。另外,通过进行 吸收校正、散射校正等可进行Standardized Uptake Value(SUV)的计算。日本广岛县中电医院PET·检 诊中心引入了Elmammo,我们科室以向该医院委托 检查的形式,自2016年起已将乳腺专用PET引入到 乳腺癌临床治疗中,并开展临床研究。

### 3. 术前化学治疗的效果判定

现已明确通过术前化学治疗能够获得病理完全 缓解(pCR)的乳腺癌预示着良好的预后,尤其是三 阴性乳腺癌与HER2阳性乳腺癌,其倾向性更显著<sup>1)</sup>。 在通过临床检查进行治疗效果判定时,一般会进行影 像检查,根据RECIST进行评价。在乳腺癌诊疗指南 2015年版中(缺文献索引)记述道"术前化学治疗的 效果判定中,与视诊、触诊相比,建议通过影像诊断 进行评价。但是,选择哪种影像采集设备,如何进行 合适的评价,还尚未得出结论。"研究表明通过造影 CT和造影MRI进行的评价,比通过触诊、乳腺X线 摄影、超声波检测进行的评价,比通过触诊、乳腺X线 摄影、超声波检测进行的评价更准确<sup>2、3)</sup>,在RECIST 指南 version 1.1 中,确定MRI为最好的影像采集设备。 但也有研究称,即使是造影MRI,在化疗结束后判定 完全缓解的过程也是不够充分的,需要结合穿刺活检 等的组织学评价<sup>4)</sup>。

据研究,FDG-PET 检查是以葡萄糖代谢为指标 的分子成像法,不使用病变的大小和血流进行评价, 能够预测治疗效果评价。在全身PET检查中,因其空 间分辨率低,导致微小残存病变的诊断较困难,而能 够检出1cm以下乳腺癌的乳腺专用PET检查则可期待 解决该课题。

### 4. 本院的经验

### (1) Elmammo 对残存肿瘤的检出能力

对45 例实施了术前化学治疗的乳腺癌病例(47 个肿瘤),在术前化学治疗结束后拍摄全身PET/CT 影 像及乳腺专用PET影像,随后进行手术。将病理学的 治疗效果分类为肿瘤完全消失(ypT0)、残存乳腺管 内病变(ypTis)和残存浸润性癌(ypT $\geq$ 1)。患者年龄 取中间值:54岁(32 ~ 74岁),雌激素受体阳性: 30个肿瘤、HER2阳性:20个肿瘤,SUVmax中间 值为全身PET/CT:1.0(IQR 0.9 ~ 1.4),乳腺专用 PET:1.9(IQR 1.5 ~ 2.7)。病理学的治疗效果为, ypT0:12个肿瘤、ypTis:5个肿瘤、ypT $\geq$ 1:30个 肿瘤。

结果显示, 乳腺专用PET 较全身PET/CT 能够以 更高的灵敏度与正确诊断率检出残存肿瘤。对不同 病理学的治疗效果解析后发现,与浸润性癌(ypT≥1) 的检出率相比, 对包含乳腺管内病变在内的残存肿 瘤(ypT≥is)的诊断精度更高(Table 1)。这是由于, ypTis的5个肿瘤之中采用全身PET/CT 能够检出的只 有1个肿瘤, 而采用乳腺专用PET 能够检出全部5个 肿瘤。

作为预测病理学治疗效果的参数,对全身PET/ CT 的SUVmax值、乳腺专用PET 的SUVmax值、乳 腺专用PET 的TNR(Tumor-to- Normal tissue Ratio) 进行解析,乳腺专用PET 比全身PET/CT更能够反映 治疗效果,最值得期待的参数为乳腺专用PET 的TNR (Fig.2)。代表性的影像如图Fig.3 所示。

## (2)术前化学治疗前后采用乳腺专用PET 对pCR的预测能力

为了评价pCR预测最适合的时间点,对术前化学 治疗前和结束后,拍摄全身PET/CT与乳腺专用PET 的35例为对象进行解析,并定义pCR为肿瘤完全消 失(ypT0)。

分别查看全身 PET/CT 与乳腺专用 PET 在治疗前 SUVmax值、治疗后 SUVmax值和 SUVmax减少率 ( $\Delta$  SUVmax),乳腺专用 PET 的治疗后 SUVmax 值及  $\Delta$  SUVmax与 pCR具有相关性(**Table 2**)。根据 AUC (Area Under the Curve)对 pCR 预测能力进行比较, 结果表明乳腺专用 PET 的所有参数均比全身 PET 好,; 采用乳腺专用 PET 时  $\Delta$  SUVmax 能够最好地预测 pCR (AUC:治疗前 SUVmax 0.543、治疗后 SUVmax 0.725、 $\Delta$  SUVmax 0.752)。

## Table 1 基于不同病理学治疗效果的全身 PET/CT 与乳腺专用 PET 的诊断精度

|           | 病理学的治疗效果(ypT≥is)的预测 |        |          |  |
|-----------|---------------------|--------|----------|--|
|           | 灵敏度(%)              | 特异性(%) | 正确诊断率(%) |  |
| 全身 PET/CT | 54.3                | 83.3   | 61.7     |  |
| 乳腺专用PET   | 77.1                | 83.3   | 78.7     |  |
|           | 病理学的治疗效果(ypT≥1)的预测  |        |          |  |
|           | 灵敏度(%)              | 特异性(%) | 正确诊断率(%) |  |
| 全身 PET/CT | 60.0                | 82.4   | 68.1     |  |
| 乳腺专用PET   | 73.3                | 58.8   | 68.1     |  |



Fig.2 基于病理学治疗效果进行全身 PET/CT 与乳腺专用 PET 的各参数比较。乳腺专用 PET 的 TNR 是在治疗效果预测方面时最值得 期待的参数 (Welch 检验)。

### **Clinical Application**



Fig.3 病理学治疗效果的术前化学治疗前后的全身PET/CT 与乳腺专用PET 的典型影像。

Table 2 基于全身 PET/CT 及乳腺专用 PET 的各参数的 pCR 预测能力

| 参数                 | pCR               | non-pCR          | Р     | AUC (95%CI)         |
|--------------------|-------------------|------------------|-------|---------------------|
| 全身 PET/CT          |                   |                  |       |                     |
| 治疗前 SUVmax         | 7.88(1.7-33.8)    | 6.22(1.3-13.2)   | 0.304 | 0.477 (0.232-0.653) |
| 治疗后SUVmax          | 0.97(0.52-1.1)    | 1.54(0-14)       | 0.062 | 0.694 (0.453-0.843) |
| $\triangle$ SUVmax | 82.23 (41.1-97.7) | 76.34(37.3-100)  | 0.275 | 0.549(0.341-0.741)  |
| 乳腺专用PET            |                   |                  |       |                     |
| 治疗前 SUVmax         | 21.73 (9.2–60.5)  | 16.28(6.5–29.9)  | 0.153 | 0.543 (0.321-0.732) |
| 治疗后SUVmax          | 2.06(1.1–2.1)     | 3.86(1-17)       | 0.032 | 0.725(0.498-0.892)  |
| $\triangle$ SUVmax | 88.56(77.2–96.5)  | 72.55(43.1–95.0) | 0.040 | 0.752 (0.486-0.907) |

由全身PET/CT与乳腺专用PET的 $\Delta$ SUVmax值的ROC(Receiver Operating Characteristic)曲线计算出的pCR预测的截断值分别为78.2%和76.6% (Fig.4)。利用该截断值的pCR预测的诊断精度,全身PET/CT的灵敏度为72.7%、特异性为54.2%、正确诊断率为56.8%,而乳腺专用PET相应的数值则分别为57.1%、86.7%和77.3%(Table 3)。

### (3)小结

由于乳腺专用PET具有检出乳腺管内病变残存的 性能,因此可考虑作为术前治疗效果判定的依据,应 用于ypTO的预测。虽然还有pCR的定义为ypTO的情况,以及包括残存乳腺管内病变ypTO/is的情况,但 据研究定义为ypTO的情况更加反映预后<sup>5)</sup>,因此在 这点上可以说乳腺专用PET 要优于全身PET/CT。在 检查的时间点方面,虽然术前化学治疗后比治疗前更 加适合作效果判定,但我们认为治疗前后的减少率是 更有效的信息。但在PET检查中,尝试在术前化学治 疗2个疗程后进行早期治疗效果的判定<sup>6)</sup>,最适合的 检查时间点还仍不明确。另外,虽然现在SUVmax值 作为FDG-PET的客观参数被频繁使用,但结果表明 在治疗效果判定方面TNR也是值得期待的。





Table 3 基于全身 PET/CT 及乳腺专用 PET 的 △ SUVmax 的 pCR 预 测能力

|          | 全身 PET/CT        | 乳腺专用PET          |
|----------|------------------|------------------|
| 灵敏度(%)   | 72.7 (57.8-82.3) | 57.1 (31.4-81.4) |
| 特异性(%)   | 54.2 (43.2-65.7) | 86.7 (51.5-98.1) |
| 正确诊断率(%) | 56.8(44.3-68.2)  | 77.3 (49.7-94.9) |

### 5. 结语

在ESMO 2017,以"术前化学治疗的效果判定" 为主题,对乳腺专用PET 的性能与全身PET/CT进 行了比较。今后,有必要对检查最适时间点和SUV 以外的参数进行评价,并不仅仅是全身PET/CT还 要与其他的影像采集设备进行比较,研究讨论乳腺 专用PET的应用方法。我们认为发挥各种各样的影 像采集设备的优点,会得到对乳腺癌更加良好的诊 疗。

#### 参考文献

- Cortazar P, Zhang L, Untch M, et al. Pathological complete response and longterm clinical benefit in breast cancer: the CTNeoBC pooled analysis. Lancet.2014;384:164-172.
- Tozaki M, Kobayashi T, Uno S, et al. Breast-Conserving Surgery After Chemotherapy: Value of MDCT for Determining Tumor Distribution and Shrinkage Pattern. American Journal of Roentgenology. 2006;186:431-439.
- 3) Londero V, Bazzocchi M, Del Frate C, et al. Locally advanced breast cancer: comparison of mammography, sonography and MR imaging in evaluation of residual disease in women receiving neoadjuvant chemotherapy. Eur Radiol.2004;14:1371-1379.
- 4) Nakamura S, Ishiyama M, Tsunoda-Shimizu H. Magnetic resonance mammography has limited ability to estimate pathological complete remission after primary chemotherapy or radiofrequency ablation therapy. Breast Cancer. 2007;14:123-130.
- von Minckwitz G, Untch M, Blohmer JU, et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J Clin Oncol. 2012;30:1796-1804.
- 6) Rousseau C, Devillers A, Sagan C, et al. Monitoring of early response to neoadjuvant chemotherapy in stage II and III breast cancer by [18F] fluorodeoxyglucose positron emission tomography. J Clin Oncol. 2006;24:5366-5372.